PREVENTIVNÍ KONZERVACE: MODERNÍ POSTUPY A TECHNOLOGIE

PRÄVENTIVE KONSERVIERUNG: MODERNE VERFAHREN UND TECHNOLOGIEN

Alena Selucká
Hana Grossmannová
Michal Mazík
PREVENTIVNÍ KONZERVACE: MODERNÍ POSTUPY A TECHNOLOGIE

PRÄVENTIVE KONSERVIERUNG: MODERNE VERFAHREN UND TECHNOLOGIEN

Alena Selucká
Hana Grossmannová
Michal Mazík

Brno 2014
A Mikroklimatické parametry prostředí
ukládání sbírkových předmětů, způsoby měření a regulace

Alena Selucká

Metodické centrum konzervace, Technické muzeum v Brně
selucka@technicalmuseum.cz

1. Úvod

Jedněm ze základních poslání sbírkotvorných institucí, jako jsou muzea a galerie, je uchovávání předmětů kulturního dědictví dalším generacím. Naplnění tohoto požadavku je spojeno se zajišťováním odpovídajících parametrů vnitřního prostředí, ve kterém jsou předměty\(^1\) dlouhodobě ukládány nebo vystavovány. Snažou je vytvářet takové podmínky prostředí, při nichž jsou procesy poškozování historicky cenných předmětů výrazně zpomaleny, přičemž je jejich životnost prodlužována. Při nastavování vhodných podmínek prostředí je nutné v prvé řadě zvážit charakter uchovávaných předmětů – citlivost a specifické vlastnosti jednotlivých materiálů, ze kterých jsou tyto předměty složeny, způsob jejich využívání, očekávanou životnost a v neposlední řadě i ekonomické a energetické možnosti s tím související. Obecně je akceptováno, že mezi určující parametry prostředí, mající vliv na chování většiny materiálů, patří teplota, relativní vlhkost, světlo, polutanity a biologické škůdci. V této kapitole je pozornost věnována vlivu teploty a relativní vlhkosti\(^2\).

2. Teplota

Většina dějů (chemických, biologických a fyzikálních) způsobujících poškozování materiálů probíhá rychleji se zvyšující se teplotou (T). Pro organické materiály platí, že rychlost degradace se zdvojnásobí při každém nárůstu teploty o 5 °C. Užitečným nástrojem pro pochopení vlivu teploty teploty a relativní vlhkosti na životnost organických materiálů je „preservation calculator“, vytvořený v Image Permanency Institut (IPI) [New Tools for Preservation, 1995]. Tento software, který je volně přístupný na webových stránkách IPI\(^3\), stanovuje kvalitu ochrany prostředí pro ukládání organických materiálů pomocí tzv. „preservation index (PI)“. Jednotkou PI je čas v roce, udávající za jak dlouho dojde u organických materiálů (uvažované jsou citlivé materiály jako kyselý papír, barevné fotografie nebo magnetické pásky) k prokazatelnému poškození, pokud budou permanentně vystaveny prostředí při dané teplotě a relativní vlhkosti. Například při teplotě 20°C a relativní vlhkosti 50 % je PI 54 let, ale při snížení teploty na 10°C a relativní vlhkosti 45 % dojde k navýšení PI na 182 let. Obecně tedy chladně a suché podmínky nabyvají PI, naopak teplé a vlhké prostředí hodnotu PI výrazně snižuje. Tento model však je třeba chápat pouze jako indikátor rychlosti chemického poškozování nestabilních materiálů vlivem různých kombinací teploty a relativní vlhkosti a nelze jej považovat za nástroj výpočtu „délky života“ pro konkrétní předměty.

V rámci nastavování vhodných teplotních podmínek je doporučováno se vyvarovat zejména horních a spodních meznic hodnot teploty, včetně jejich náhlych fluktuací. Za nebezpečnou hranici se považují teploty nad 30 °C, kdy u chemicky citlivých materiálů může docházet k výraznému poškozování. Příkladem jsou magnetická média (např. video pásky, diskety), které při dlouhodobém ukládání za vyšších teplot přestávají být funkční, nitrat celulózy (celuloid) žlutne – rozpadá se, tištěný fotografický materiál bledne (i v tmavém prostředí), acetátové filmy podléhají zvýšené autodegradaci, guma a polyuretanové pěny křehnou, slepují

\(^1\) V textu je dále používán též termín sbírkové předměty.
\(^2\) Působení světla má významný vliv zejména v rámci vystavování předmětů; během jejich ukládání v muzejních depozitářích lze tento rizikový faktor účelně eliminovat, proto mu není věnována samostatná pozornost v rámci této kapitoly.
\(^3\) http://www.imagepermanenceinstitute.org/ shtml_sub/dl_prescalc.shtml
Materiály jako jsou akrylové barvy, jejichž teplota skleněného přechodu T_g (teplota zesklenění) je blízká nebo leží pod pokojovou teplotou, mohou měknout při této pokojové teplotě [Pas 198: 2012]. Ohroženy jsou také různé vosky a pryskyřice s poměrně nízkou teplotou tání (např. parafínový vosk má teplotu tání 52–58°C, včeli vosk 61–70 °C, karnaubský vosk 81–86 °C), [Konzervování a restaurování kovů, 2011, 303–304].

Za ještě bezpečnou spodní hranici teploty se považuje hodnota 5 °C, která je minimální podmínkou pro předcházení zánrnu vody v potrubí a udržování tak přiměřené kondice budov. Obecně je chladiční prostředí přeformováno pro zajistění stability většiny materiálu. Některé sbírkové předměty jako jsou barevné fotografické záznamy (filmy a fotografie) vyžadují dokonce i velice nízké hodnoty teploty do 2 °C [ČSN/ISO 11799]. Naopak ale jiné polymericální materiály (moderní akrylátové barvy a nátěry tuhoun a křehkou při teplotě pod 5 °C a stávají se tak velice citlivými pro další manipulaci. Notoricky známým typem poškození je též polymorfní poškození malby, vypálení pod pokojovou teplotu o 1 °C znamená pokles relativní vlhkosti o 3 %.

Do úvodu bylo prokázáno, že některé komponenty cínových slitin, například olovo, brzdí tuto přeměnu, a proto je nebezpečí pro sbírky cínového nádobí (zhotovených ze slitin cínu a olova) jsou vzhledem k nízké teplotě minimální [Mervalová, 2010].

<table>
<thead>
<tr>
<th>Materiál</th>
<th>Teplotní koeficient délkové roztažnosti [ppm/°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bílý dub, Quercus alba, příčný řez</td>
<td>0,3</td>
</tr>
<tr>
<td>Bílý dub, Quercus alba, radiální řez</td>
<td>32</td>
</tr>
<tr>
<td>Bílý dub, Quercus alba, tangenciální řez</td>
<td>40</td>
</tr>
<tr>
<td>Olejová barva, white lead</td>
<td>44</td>
</tr>
<tr>
<td>Olejová barva, yellow ochre</td>
<td>64</td>
</tr>
<tr>
<td>Olejová barva, Naples yellow</td>
<td>52</td>
</tr>
<tr>
<td>Kožní králičí klíh</td>
<td>29</td>
</tr>
<tr>
<td>Copper</td>
<td>17</td>
</tr>
<tr>
<td>Aluminum T-2024</td>
<td>23</td>
</tr>
</tbody>
</table>

Tab. 1: Teplotní koeficient délkové roztažnosti pro různé materiály malby, upraveno dle Mervin, 2007.

Náhled změny teploty jsou nebezpečné zejména pro předměty, zhotovené z více druhů materiálů, s různou tepelnou roztažností. Důsledkem je vytváření vnitřního teplotního gradientu a pnutí v materiálech. Příkladem je barevná vrstva obrazů obsahující různou skladbu organicích a anorganicích pigmentů a pojiv. Ukázka vybraných teplotních koeficientů délkové roztažnosti některých materiálů malby, včetně dřeva, je uvedena v tab. 1. Z obdobného důvodu jsou citlivé i smaltované kovové povrchy. Tyto materiály se vlivem rychlých změn teploty stávají velice křehkými pro transport a manipulaci.

Důležité je též zdůraznit, že veškeré změny teploty přímo souvisí i se změnou relativní vlhkosti. Čím vyšší je teplota, tím více vlhkosti může vzduch za stejného tlaku pojmut [Josef, 2010, str. 168]. Užitéčné je si zapamatovat, že zhruba každý nárůst teploty o 1 °C znamená pokles relativní vlhkosti o 3 %. Přestože je z hlediska zajištění stability většiny materiálů doporučováno udržovat stálou hodnotu teploty i relativní vlhkosti, připouští se pomalé a postupné sezónní změny těchto klimatických parametrů z důvodu snížení s tím spojených energetických nákladů (tab. 2).
3. Relativní vlhkost

Relativní vlhkost (RV) ovlivňuje rychlost mnoha degradačních mechanismů. Pro každý materiál existuje určitá úroveň obsahu vlhkosti v okolním prostředí, která je v souladu s jeho maximální chemickou, biologickou a fyzikální stabilitou. Jestliže je tato vlhkost prostředí nepříliš vysoká či nízká (či dochází k jejím náhlým změnám), stává se související hodnota relativní vlhkosti rizikovým faktorem. V zásadě neexistuje jedna univerzální hodnota relativní vlhkosti nebo interval jejich výkyvů, které by byly bezpečné pro většinu sbírkových předmětů.

Příkladem jsou organické materiály, které jsou hygroskopické, tj. mají schopnost přijímat vodu z okolí nebo ji naopak do něj odevzdat. K této výměně dochází tak dlouho, dokud se neustává difuzní rovnováha mezi přirozeným obsahem vody v materiálu a okolním prostředím (rovnovážný obsah vlhkosti). Je-li vlhkost prostředí stálá a neměnná, organický materiál dosáhne úrovní určitého vlhkosti v materiálu a v okolním prostředí (rovnovážný obsah vlhkosti). Je-li vlhkost prostředí příliš vysoká či nízká nebo dochází k jejímu kolísání, organický materiál reaguje změnou fyzikálních parametrů až do stadia poškození (deformace, praskání, zvlhčení, změna mechanických vlastností apod.).

Obsah vlhkosti v materiálu je dán poměrem hmotnosti obsažené vody k celkové hmotnosti vlhkého vzorku (popř. hmotnosti sušiny).

\[w = \frac{m_v}{m} \times 100 \% \]

Rovnovážná vlhkost materiálu je dosažena při vlhkosti materiálu odpovídající obsahem vlhkosti v okolním vzduchu. Tato závislost je vyjádřena sorpční izotermou (obr. 1).

Obr. 1: Sorpční izotermu běžného lesního dřeva při různých teplotách (w – obsah vlhkosti ve dřevě; \(\varphi \) (RV) – relativní vlhkost vzduchu).
Z uvedených sorpčních izoterm je patrné, že vlhkostní rovnováha materiálu závisí též na teplotě okolního vzhledu. Tvar sorpčních izoterm naznačuje, že k většímu nárůstu rovnovážné vlhkosti dřeva dochází při relativní vlhkosti vzhledu nad 70 % a při snižování teploty. Kolísání relativní vlhkosti vzhledu v intervalu RV 40–60 % se většinou považuje u dřeva za přijatelné, nesmí však být rychlé a časté. Sorpční izotermy různých materiálů se mohou od sebe výrazně lišit, přesto skloňy prostředních částí křivek odpovídajících dřevu jsou při teplotě okolo 20 °C poměrně blízké i pro řadu jiných organických materiálů jako je papír, textil apod.

Na druhou stranu není obecně nutné, aby okolní vzhled musel mít pro zachování určité vlhkosti materiálu stálou teplotu i relativní vlhkost. Vlhkostní rovnováha je přijatelně splněna i při různých teplotách vzhledu, pokud lze zanedbat vliv teplotní roztažnosti materiálu a pokud je relativní vlhkost vzduchu dané teplotě nebo naopak, při vyšší teplotě musí být relativní vlhkost vzhledu vyšší [Černý, 2011].

Zároveň je třeba si uvědomit, že tradičně doporučované hodnoty teploty 18 – 20°C a relativní vlhkosti 50 ± 5 %, tzv. ideálního muzejního klimatu, nemusí být pro dřevo ani řadu jiných hygroskopických materiálů tím optimálním řešením. Platí to zejména pro považované jako ideálního muzejního klimatu, ve kterém byly objekty kulturního dědictví – Požadavky na teplotu a relativní vlhkost prostředí s cílem zamezit mechanickému poškozování organických hygroskopických materiálů, k němuž dochází v důsledku klimatu. Tato norma definovala tzv. „historické klima“, které je popsáno jako „klimatické podmínky prostředí, ve kterém byly objekty kulturního dědictví vždy drženy nebo v něm byly ponechány delší dobu (minimálně po dobu jednoho roku) a jsou v něm aklimitizovány. “ Pokud bylo prokázáno (na základě odborného zhodnocení jejich stavu konzervátorem-restaurátorem a dalšími specialisty), že historické mikroklima není pro dané materiály škodlivé, pak tato norma doporučuje ponechat podmínky v daném prostředí, na které byly po dlouhou dobu aklimitizovány. Důležitou součástí doporučení je stanovení průměrné hodnoty RV, sezónního cyklu a přítomnosti krátkodobých výkyvů relativní vlhkosti a teploty. Sezónní cyklus je stanoven na základě středního měsíčního klouzavého průměru (MA), který je aritmetickým průměrem všech hodnot RV, měřených ve třícti po sobě jdoucích dnech, přičemž krátkodobé výkyvy jsou odečítany jako rozdíl mezi aktuálně naměřenou hodnotou RV a danou hodnotou MA. Horní a spodní limit přijatelného rozmezí odpovídají 7. a 93. percentilu výkyvů RV, zaznamenaných ve sledovaném období (obr. 2). Závislost hodnot středního měsíčního klouzavého průměru v čase zvýrazňuje dlouhodobé trendy prostředí a odlišuje krátkodobé výkyvy. Tento způsob vyhodnocování RV a T umožňuje lépe pochopit např. střídání zimních a letních cyklů, identifikaci jednotlivých zón mikroklimatu uvnitř budov či vymezení náhly skokových změn.
Při nastavování vhodných klimatických podmínek se doporučuje vzhledem k charakteru a citlivosti uchovávaných sbírkových předmětů zejména stanovit a nepřekračovat:
• přípustné spodní a horní limity RV
• přijatelnou rychlost změn RV
• rozsah fluktuací RV

U většiny materiálů dochází k jejich poškozování vlivem nesprávné relativní vlhkosti, pokud relativní vlhkost vzduchu je vyšší než 70 % nebo naopak konstantně nízká pod 30 %.

Prostředí s vysokou RV je živnou půdu pro růst plísní, způsobujících rozklad a barevné změny organických materiálů, zejména usně, textilu, papíru a dřeva. Nejvíce ohrožené jsou materiály obsahující proteiny, škrob nebo cukr (např. pergamen, škrobený textil, živočišná lepidla, prachem zanesený papír). Tvorba plísní a rychlost jejich růstu je ovlivněna i dalšími faktory jako je teplota, pohyb vzduchu, druh plísní apod. Časová závislost růstu plísní na relativní vlhkosti je uvedena na obr. 3. Uvedená závislost prakticky vynechuje bezpečnou zónu pod 70 % RV, při které je potřeba řádově až stovky dní k viditelnému růstu plísní [ASHRAE, 2007, str. 244].

Zvýšená vlhkost ovlivňuje také celou řadu fyzikálně-chemických reakcí, jako jsou významnější reakce s oxidy síry a jinými polutanty, koroze kovů, hydrolyza skla, pohyb solí uvnitř porézní keramiky a kamene, rozpad minerálů apod. Příkladem je třeba známý fakt, že pyrit (sulfid železnatý) se oxiduje a rozpadá při podmínkách relativní vlhkosti blízké 60 %. Proto pro ukládání mineralogických a paleontologických sbírek, které obsahují tento minerál, je nutné dodržovat relativní vlhkost pod 60 %. Obdobně také nestabilní sklo (středověké sklo s vysokým podílem alkalických složek) je více náchylné k vzniku irizujícího povlaku a korozním produktům. Stejně tak je za vyšší vlhkosti (nad 65 %) významně urychlená kyselá hydrolyza papíru, zejména v případě kyselého, nekvalitního papíru a papíru obsahujícího železogalové inkousty.

Nízká relativní vlhkost, pod 30 %, způsobuje vysušení a zkřehnutí organických materiálů – sesychání a praskání dřeva, usnění, pergamenů, slonovin, proutěných košíků, apod. Může být důvodem sesychání papíru a lepidel, praskání a odpadávání laků, malby, fotografické emulze. Stabilně nízká relativní vlhkost může způsobit též lokální vysychání skla a jeho praskání.

Pro většinu anorganických materiálů jsou ale podmínky nízké relativní vlhkosti pod 30 % optimální. Příkladem jsou zkorodované železné předměty, pro které je doporučováno velmi suché prostředí s RV pod 18 % (stabilizace aktivní chloridové koroze) nebo pro předměty ze slitin mědi, napadené nemocí bronzů, platí podmínky RV pod 50 %.
Náhlé a rychlé výkyvy hodnot relativní vlhkosti jsou obecně považovány za velmi nebezpečné situace, ohrožující stabilitu mnoha sbírkových předmětů. Tyto podmínky mohou vyvolat objemové změny a strukturní poškození hygroskopických materiálů tj. bobtnání, praskání dřeva, odlupování polychromie, intarzií či zlacení. Hrozí například smrštování vláken u již narušených tapisérií, poškozování vrstvených materiálů jako např. knižní vazby, fotografii, negativů, magnetických záznamů či malb.

Velmi dlouhé fluktuace, jako jsou sezónní změny, jsou dostatečně pozvolná, aby bylo možné využít procesu uvolnění – relaxace napětí v rámci struktury uchovávaných předmětů. Údaje o efektivním modulu pružnosti mnoha olejových a akrylátových nátěrů jako funkce času, teploty a relativní vlhkosti a přímé údaje o uvolnění napětí jako pro náčrt a dřevo ukazují, že napětí způsobené daným zatížením aplikovaným po dobu jednoho dne se snižuje na 50 % i méně, pokud je toto napětí aplikováno po dobu čtyř měsíců při příměřené pokojové teplotě [Michalski, 1991].

Tudíž čtyřměsíční sezónní výkyv ± 20% RV by měl způsobit menší napětí ve většině zkoumaných artefaktů než týdenní fluktuace ±10 % hodnoty RV. Zároveň je nutné podotknout, že krátká fluktuace RV, v délce trvání do jedné hodiny, nezpůsobuje prokazatelnou odezvu u většiny předmětů [ASHRAE, 2007, str. 246].

Nastavení vhodných klimatických podmínek RV a T je tedy kompromisním řešením, vycházejícím z analýzy stavu uchovávaných sbírkových předmětů, jejich materiálových charakteristik, stavebně-technických parametrů budov, energetických nároků a s tím spojených finančních možností. Vhodným doporučením v této oblasti je klasifikace prostředí v muzeích, galeriích, archivích a knihovnách uvedená ve sborníku ASHRAE, 2007, která byla zpracována v úzké spolupráci s Kanadským konzervátorským institutem. Podmínky prostředí jsou rozděleny v rámci progresivních skupin AA až D, které vymezují odpovídající rozsah nastavení hodnot RV a T, v přímo vazbě s tím spojenými riziky a výhodami pro uchovávání předmětů (tab. 2).

Například skupina AA odpovídá precizní kontrole bez možných sezónních výkyvů se stálou celoroční hodnotou RV a s minimální fluktuací ± 5 %. Takovéto podmínky však vyžadují odpovídající konstrukci budovy s kvalitní izolací a řízeným vnitřním klimatem. Energeticky výhodnější je skupina A, která připouští buď krátkodobé výkyvy anebo sezónní změny RV ± 10 %, ale ne obojí zároveň. Většina historických budov nebo menších muzeí spadá dále do skupiny B s uvedenými gradienty teploty a vlhkosti. Nastavení klasifikace C odpovídá prevenci rizik spojených s mezniemi hodnotami RV a T a skupina D je pouze ochrannou proti vysoké vlhkosti.
<table>
<thead>
<tr>
<th>T °C</th>
<th>RV %</th>
<th>Změny RV, T</th>
<th>Rizika /Výhody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roční průměr Roční průměr nebo historický roční průměr</td>
<td>Sezónní nastavení</td>
<td>Krátkodobá fluktuace</td>
<td>AA – bez rizik mechanického poškození většiny hygroskopických materiálů (malba apod.), mimo nestabilní kovy a minerály</td>
</tr>
<tr>
<td>± 5 °C</td>
<td>± 5 %; ±2 °C</td>
<td>A – malá rizika mechanického poškození pro vysoce citlivé materiály, bez rizik pro většinu materiálů – malbu, knihy, fotografie</td>
<td></td>
</tr>
<tr>
<td>+ 5 °C</td>
<td>± 10 %; ± 2 °C</td>
<td>B – střední rizika mechanického poškození pro vysoce citlivé materiály, malá rizika pro většinu materiálů, malbu, fotografie a knihy</td>
<td></td>
</tr>
<tr>
<td>-10 °C</td>
<td>± 5 %; ± 2 °C</td>
<td>C – vysoké riziko mechanického poškození pro vysoce citlivé materiály střední rizika pro většinu materiálů</td>
<td></td>
</tr>
<tr>
<td>+10 °C</td>
<td>± 10 %; ± 5 °C</td>
<td>D – vysoké riziko náhlého/kumulativního mechanického poškození pro většinu materiálů</td>
<td></td>
</tr>
<tr>
<td>(pod 30 °C a dolní hranice tak, aby byla udržena požadovaná hodnota RV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 – 75 %</td>
<td></td>
<td>Suché prostředí – specifické podmínky pro ukládání kovů</td>
<td></td>
</tr>
<tr>
<td>T zřídká přes 30 °C, většinou pod 25 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pod 75 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 – 30 %</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Měření a regulace teploty a relativní vlhkosti

Pro sledování hodnot teploty a relativní vlhkosti je vhodné používat kombinované elektronické záznamové měřicí přístroje (dataloggery). Naměřená data RV a T jsou poté převáděna do počítače a podle vhodného programu lze vyhodnocovat jednotlivé fluktuace nebo sezónní cykly. Průběžné měření dat by mělo probíhat v časových intervalech alespoň jedné hodiny, popř. i kratších úsecích, z důvodu zachycení dynamiky změn prostředí. Důležité je též dodržet správnou metodiku umístění měřicích přístrojů ve sledovaném prostoru tzv. zvolit takové místo, které není ovlivněno proměnlivým prouděním, blízkostí oken a dveří, topných těles apod. Optimální je umístění do stědu místnosti, zhube ve výšce 1,5–1,8 m nad podlahou [Josef, 2010, str. 181]. Na druhou stranu pro objasnění různých vnitřních klimatických zón se někdy doporučuje též měření v blízkosti stěn, podlah či uvnitř úložných regálů.
Dosažení pokud možno co nejstabilnějších hodnot RV a T lze zajistit různými způsoby. V návaznosti na potřebu snižování energetických výdajů a emisí uhlíku jsou v posledních letech preferovány pasivní regulační prvky. Základem je vhodné architektonické a stavební řešení budov, které jsou určeny pro dlouhodobé ukládání sbírkových předmětů. Důležité je správné umístění budovy vůči možným rizikovým vlivům, jako jsou různé zdroje vlhkosti a též intenzita slunečního osvitu. S tím souvisí volba kvalitní izolace a stavebních materiálů s odpovídajícími hygromerzními vlastnostmi včetně nastavení účinného způsobu ventilace vzduchu.

Hodnoty vlhkosti lze regulovat pomocí zvlhčovacích nebo odvlhčovacích přístrojů, které mají efektivní použití zejména v případě menšího objemu kontrolovaného prostoru, s malou intenzitou výměny vzduchu. Určitým omezením pro kondenzační odvlhčování je okolní nízká teplota, jelikož tyto přístroje pracují pouze do teploty asi 8 °C. V případě použití mobilních zařízení hraje roli také lidský faktor, jelikož je nutné zajistit průběžné doplňování nebo odebírání vody.

Další možností, jak řídit vlhkost uvnitř budov, je využít vytápění. Jedná se o jednoduchý princip, který vychází ze závislosti relativní vlhkosti na teplotě (viz. dříve). V zahraničí je zavedena metoda vytápění, které je řízeno humidistatm, zvaná *conservation heating*. Tento postup je založen na předpokladu, že pro zajištění stability většiny materiálů je podstatnější kontrolovat relativní vlhkost než teplotu. Topení se spíná, pokud relativní vlhkost vzduchu roste nad hodnotu nastavení (např. 60 %) a vypíná při jejím poklesu pod danou hodnotu. Zároveň je zadána horní mezní teplota, při které se topení vždy vypne, aby nedocházelo k přehřívání prostoru (např. 25 °C). Opět je nastavena i spodní mez (5 °C), při které je topení sepnuto, aby nehrozilo vymrzání objektu. Strategie kontroly relativní vlhkosti pomocí vytápění je úspěšně zavedena ve většině historických budov spravovaných National Trust ve Velké Británii [Stanifoth, 2007; Bullock 2009]. Pro velké budovy, vybavené tepelnými čerpadly vykazuje topení s humidistaty nejefektivnější energetický postup za předpokladu, že jejich tepelná izolace není příliš špatná [Broström, 2011].

Budovy vybavené stabilním vzduchotechnickým zařízením mohou využívat různých funkcí řízené regulace vzduchu, zahrnující jeho filtraci, ohrávání a ohlazování, zvlhčování nebo odvlhčování či komplexní řešení centrální klimatizace. Tato strategie musí být vždy pečlivě zvažena z hlediska stavebně-technického řešení budovy, charakteru a způsobu využívání sbírkových předmětů a v neposlední řadě též na základě kalkulace energetických a finančních nákladů.

Zkušenosti z posledních let ukazují, že je nutné hledat úspornější řešení regulace klimatických parametrů pro dlouhodobé ukládání předmětů kulturní povahy, varianty s menší ekologickou zátěží a též v kontextu s reálně nastavenými standardy doporučených hodnot relativní vlhkosti a teploty. Předpokladem pro zkvalitňování těchto podmínek je vzájemná diskuse vedená napříč mezi profesemi architektů, stavebních inženýrů, klimatologů, muzejních pracovníků a konzervátorů-restaurátorů. Hlavní zásady spojené s těmito otázkami jsou součástí nedávného stanoviska pracovníků z Doerner Institutu v Mnichově [Burmester, 2013], zpracované též v návaznosti na výsledky evropského projektu Climate for Culture a určité budou dále reflektovány v rámci širokého spektra institucí, spravujících světové kulturní dědictví.
5. Literatura

ČSN/ISO 11799: Informace a dokumenty. Požadavky na ukládání archivních a knihovních dokumentů.

ČSN EN 15757: Ochrana kulturního dědictví – Požadavky na teplotu a relativní vlhkost prostředí s cílem zamezit mechanickému poškozování organických hygroskopických materiálů, k němuž dochází v důsledku klimatu., Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2011.

Josef, J.: Úvod do preventivní konzervace, Úvod do muzejní praxe, Asociace muzeí a galerií ČR, Praha, 2010, s. 168 a s. 181.

Konzervování a restaurování kovů – Ochrana předmětů kulturního dědictví z kovů a jejich slitin, Technické muzeum v Brně, 2011, s. 303–304.

Msallamová, Š., Jindrová E.: Cínové křtitelnice z 2. pol. 16. století, Sborník z Konference konzervátorů-restaurátorů, Technické muzeum v Brně, Brno 2010, s. 31.

Pas198:2012, Specification for managing enviromental conditions of cutural collections, the British Standards Institution, 2012, s. 6–8.

B Efektivní hodnocení kvality vnitřního prostředí v muzejních a galerijních institucích

Hana Grossmannová

Metodické centrum konzervace, Technické muzeum v Brně
grossmannova@technicalmuseum.cz

1. Úvod

Oblast preventivní konzervace – zajištění vhodných dlouhodobých i krátkodobých podmínek pro uložení sbírkového předmětu – zahrnuje několik důležitých faktorů. Ve většině institucí je dnes již klade důraz na sledování a regulaci hodnot relativní vlhkosti, teploty a osvětlení v depozitárních prostorách i expozicích. Dalším důležitým, často však opomíjeným faktorem, který má významný vliv na stav předmětů je také kvalita prostředí z pohledu koncentrace škodlivin – polutantů. Důvodů pro tento fakt je hned několik. Z pohledu muzejního pracovníka je velmi náročné jak odborně tak i ekonomicky tuto oblast preventivní konzervace uchopit. Lze říci, že pomineme-li některá zařízení, která fungují na principu dozimetrického stanovení celkové korozivní zátěže prostředí, nelze využít jednotné postupy a jednotné analytické techniky. Tento metodický text vám umožní zorientovat se ve zjednodušené formě License to the overall content, for any purpose, for free. The information is freely available and can be used without any limitations. However, please note that the content is provided as is and with no warranty. If you need any clarification or have questions, feel free to ask!
2.1. Výběr lokalit – kde je třeba měřit a co je třeba sledovat

První otázkou, kterou by si měl odborný pracovník položit je, které lokality a proč je potřeba z pohledu znečištění chemickými látkami sledovat. Zde je na místě si uvědomit, že základem jakékoliv studie v této oblasti je zejména pečlivý prvotní průzkum lokalit a s ním spojené vyhodnocení možných rizik. Spíše než detailně a velmi složitě popisovat a analyzovat přítomné polutanty, je totiž potřeba naučit se základním průzkumem odhadnout, kde jsou přítomny potenciální zdroje škodlivin a naučit se je vhodným způsobem eliminovat. Série měření by pak měly být prováděny zcela jednoznačně současně v několika konkrétních vytipovaných lokalitách. Jedna z nich by pak měla být ve vnějším prostředí, což je důležité pro získání referenčních hodnot. Jak tedy postupovat při výběru míst k provedení analýzy? Je potřeba zaměřit se především na riziková místa z pohledu následujících faktorů:

1) Očekávaný výskyt konkrétních polutantů

Každý objekt, ve kterém jsou uloženy předměty kulturní hodnoty je z chemického hlediska jedinečný. Z pohledu vnějších zdrojů škodlivin bývá nejryzíjší zejména zvýšené zatížení dopravou nebo průmyslovou aktivitou v blízkém okolí objektu. Z pohledu vnitřního prostředí pak věnujeme pozornost materiálové skladbě budovy, samotnému mobiliáři v expozicích a depozitářích, užitým obalovým materiálům a v neposlední řadě také materiálové struktuře vlastní sbírky. Typickými příklady materiálů, které mohou být zdrojem škodlivin a poškozovat tak sbírkové předměty jsou například kyselé druhy dřeva, dřevoftřískové desky, kyselý papír nebo lepenky, většina lepicích pásek a lepidel, používaných v interiérech, nátery a laky (olejové, epoxidové), kámen nebo cihly kontaminované solí, kov (při vysoké vlhkosti), organický materiál (kůže/useň, vlna), některé plasty (např. polyvinylchlorid, polyuretanová pěna, vulkanizovaná guma, nitrát a acetát celulosy) nebo čistící prostředky.

2) Specifická zátěž prostředí

Každá nemovitost, která ukrývá předměty kulturní povahy, je vystavena nejenom stabilním dlouhodobým vlivům, ale i časově nebo prostorově specifickým zátěžím. Zvýšená pozornost by tak měla být věnována například uzavřeným izolovaným depozitářům či vitrinám bez aplikovaných opatření na úpravu kvality ovzduší. Problémem bývají také například lokality, které prošly v nedávné době rekonstrukcí (významným zdrojem škodlivin jsou stavební materiály, nátery, lepidla, apod.). Zátěž prostředí mohou také navýšit další faktory, jako je nově instalovaný mobiliář či vybavení, změna dopravní situace nebo jiné dočasně vnější zdroje.

3) Známky zrychlené degradace uloženého materiálu

Podrobným průzkumem muzea či galerie můžeme usoudit na zvýšenou koncentraci škodlivin v ovzduší pomocí nepřímé metody, a to na základě předmětů se známkami urychlené degradace materiálu. Zde je však zcela evidentně nutné spolupráci s konzervátorem-restaurátorem sbírky. Analýzu změny stavu materiálu v čase, souvisící s nevhodným uložením a vystavením předmětu škodlivinám, musí posoudit odborník, pečující o stav sbírky. Nutno je také odlišit vliv polutantů od důsledků nevhodného klimatu či neefektivně provedeného konzervátorskorestaurátorského zásahu. Typickým příkladem urychlené degradace materiálu může být zjištění aktivní koroze kovů, změna opacity skla či keramiky, změna barevnosti textilií, nezapříčiněná světelnou expozicí, křehnutí materiálu papíru, rozklad vápenatých struktur, apod.).

4) Nevhodné klimatické parametry

Dalším významným faktorem, souvisícím s vlivem škodlivin na stav sbírkových předmětů, jsou klimatické změny a nevhodné klimatické parametry prostředí. Typickým příkladem může být vysoká fluktuace teploty a s ní spojená fluktuace relativní vlhkosti, či obecně dlouhodobé vystavení materiálu extrémním klimatickým podmínkám. Zvýšená teplota oproti standardním doporučeným hodnotám (15 – 22 °C) může totiž znamenat prudký nárůst reakčních rychlostí degradacínlých dějů, nebo intenzivnější uvolňování látek z objemu materiálu. Vysoká relativní vlhkost pak může znamenat, že i při nízkém poklesu teploty bude docházet ke kondenzaci vody na povrchu předmětu, což zapříčiní vytvoření reaktivní vrstvy vody a směsi plynných, kapalných i pevných škodlivin. Voda tak působí jako reaktant a zároveň jako nosné médium pro ostatní polutanty. Obdobné
následky na stav materiálu mají i intenzivní krátkodobé fluktuace teploty a relativní vlhkosti. Problematickým parametrem prostředí může také být vysoké zatížení světlem. Záření z viditelné oblasti spektra a UV záření zapříčiní fotochemické reakce a také je zdrojem energie pro další chemické reakce.

2.2. Výběr konkrétních škodlivin – co budeme měřit

V rámci analýzy bychom se měli soustředit na ty chemické látky, jejichž zdroje byly identifikovány při průzkumu nebo na ty, které jsou obecně považovány za nejšílenější degradanty. To jsou konkrétně plynné palivové oxidy síry, oxidy dusíku, kyselina octová a mravenčí (obecně kyselé reagující látky), ozon, formaldehyd, siovdík, amoniak (obecně zásadité látky) nebo jejich směsi (např. těkavé organické látky – VOC). Samostatnou kapitolu pak je analýza aerosolu – stanovení množství těžkých kovů, frakcí prachových částic, sedimentovaných i rozptýlených v ovzduší, apod. Vyhodnotit lze také celkovou korozivní zátěž prostředí využitím korozivních kuponů – jedná se o poměrně jednoduché a orientační měření, které je však výhodné z pohledu ekonomické i odborné náročnosti daných experimentů.

2.3. Seleka analytických metod – jak bude měřit, kritéria

V současně době se pro detekci polutantů v životním prostředí využívají dva obecné typy odběru vzorku pro monitoring – aktivní a pasivní. Oba tyto typy v podstatě využívají principu absorpce či adsorpce plynných polutantů (ať již fyzikální nebo chemické) na různě pevné nebo gelové médium, případně přímý odběr média – plynu, kapaliny a pevných částic. Metody aktivního vzorkování jsou v principu ty, které pro odebrání vzorku využívají „aktivní“ odběr vzduchu, např. přes ručiční elektrickou pumpu. Pasivní vzorkování pak v zásadě znamená pouhé umístění sorbentu do zkoumaného prostředí a sorpci látek na základě přirozené difúze. Aktivní metody vzorkování sebou nutně přinášejí i nutnost náročné přístrojové analýzy, jejich využití je tedy obtížné jak z hlediska odborníka, tak i z hlediska ekonomického. Proto je jejich aplikace vhodná pouze pro řešení jednotlivých parciálních úkolů a nikoliv pro monitoring kvality prostředí obecně.

Pro stanovení koncentrací mnoha důležitých škodlivin by bylo nutné dlouhodobě odebrat řadu vzorků souvětně ze všech lokací. Mezi analytické metody, využívané k hodnocení znečištění prostředí patří např. fotometrie, chemiluminiscence, plynová chromatografie, vysokoúčinná kapalinová chromatografie, gravimetrie nebo hmotnostní spektroskopie s indukčně vzaženým plazmatem. Větší význam pro instituce, jako jsou muzea a galerie, mají dozimetry, které stanovení koncentraci látek pomocí pasivního odběru. Obecně se dá říci, že jejich užití je jednodušší a na trhu existuje celá řada vhodných produktů. Existují varianty pasivních dozimetrů, které vyžadují následně analýzu vzorku v laboratoři, ale i takové, které na základě změny své vlastnosti (např. barevnosti) jsou schopny detektovat koncentrace některých látek v ovzduší přímo na místě měření. Dále je v souvislosti s kvalitou prostředí nutné zabývat se také koncentrací nikoliv plynných polutantů, ale i pevných, které obecně nazýváme prach.

Jedná se však o složitou směs látek, která je charakteristická pro danou lokalitu a místní zdroje znečištění.

Specifickou skupinou analytických metod, využívaných pro monitoring prostředí, jsou pak takové, které fungují na principu hodnocení degradace modelového materiálu. Tyto techniky však neumožňují stanovit koncentraci konkrétních polutantů, ale pouze udávají celkovou zátěž prostředí, a to včetně vlivu teploty, vlhkosti a dalších parametrů. To je však v podstatě velmi zásadní! Jedním z principů preventivní konzervace je sledování všech vlivů, které mohou ovlivnit stav materiálu. Tak jako relativní vlhkost strukturální souvisí s teplotou, tak i rychlost reakcí a volatilita polutantů nebo uvolňování látek z materiálu je velmi závislá na ostatních parametrech prostředí. Příkladem může být vztah teploty a rychlosti chemické reakce, který je svázán Arrheniovo rovnicí. Vždy je proto třeba sledovat celkovou zátěž prostředí, anebo hodnotit koncentrace látek v souvislosti s teplotou a vlhkostí. Mezi tyto techniky pak patří řízená korozní kupony různých typů, obsahující většinou plátky čistého kovu (měď, stříbro). Tyto kupony jsou vysazené sledovanému prostředí po dobu danou výrobce a poté jsou odeslány k analyze. V ideálním případě pak je stanovena míra korozivity prostřední (stupeň C1 až C5) nebo popsány korozní produkty, které byly vytvořeny na konvových plátcích. Z těchto výsledků pak můžeme usoudit na výskyt některých skupin polutantů. Výhodou těchto technik je možnost porovnat celkovou zátěž prostředí na mnoha místech paralelně. Nevýhodou je
skutečnost, že celková zátěž je v tomto případě stanovena na základě korozu kovů. I když jsou v publikacích běžně označovány jako nejvýznamnější polutanty takové látky, na které jsou kovy citlivé. Nevyhnete se otázce, zda v souvislosti s degradací jiných materiálů nemají mnohem větší vliv zcela jiné chemické látky.

Další možnosti je využít pro experimenty přístroje, které by měly být schopny podávat informace o kvalitě prostředí kontinuálně. Nyní jsou na trhu typy, které fungují na principu korozí kovů – obsahují elektrochemické senzory obsahující opět čistý plátek kovu. Výstupem bývá záznam teploty, vlhkosti a křivka korozního stáří a to na základě vzniku znečištěných bičíků a projevů korozivního úhledu. Pro úpravy kvality vzduchu lze také využít malé filtrační jednotky, napájené bateriemi, kompaktní mobiliář přenosné filtrační zařízení nebo i průmyslově vyráběné čističky vzduchu.

2.4. Vyhodnocení – aplikace opatření

Výsledky měření a zejména vzájemné porovnání koncentrací škodlivin z jednotlivých lokalit umožňují především vytvořit strategii pro umístění a efektivnější ochranu sbírkových materiálů dle stupně jejich citlivostí nebo aktuálního stavu. Důležitým výstupem studie je i potvrzení zdrojů škodlivin (například nevšedně nebo aktivních sorbentů). Pro úpravy kvality vzduchu lze také využít malé filtrační jednotky, které by měly být schopny podávat informace o kvalitě ovlivnění, a to na základě vzniku znečištěných bičíků a projevů korozivního úhledu. Pro úpravy kvality vzduchu lze také využít malé filtrační jednotky, napájené bateriemi, kompaktní mobilní přenosné filtrační zařízení nebo i průmyslově vyráběné čističky vzduchu.

Nejprve se tedy věnujme otázce vyhodnocení rozdílů v experimentálně zjištěné chemické zátěži jednotlivých lokalit. Tyto výsledky nám mohou napomoci například k efektivnějšímu rozmístění sbírek v rámci jednotlivých místností nebo části objektu tak, aby nejcitlivější a nejvýznamnější sbírky byly ochrannější vaně lule. Zde je však potřeba si uvědomit, že značný podíl na znečištění oxidu má často právě i ty materiály, ze kterých jsou zhotoveny sbírkové předměty. Při vlastní evaluaci výsledků se musíme zaměřit na vyhodnocení zásadní otázky, a to zda je zatížení prostředí způsobeno zejména vnějšími nebo vnitřními zdroji. Pokud jsou zdrojem problémů hlavně vnější polutanty, je potřeba zabránit jejich penetraci do budovy a zároveň pečlivě udržovat vnitřní klima. Pokud je budova vybavena klimatizačním systémem, je velmi potřebné sledovat a udržovat dobrý stav instalovaných filtrů. V případě, že škodliviny zjištěné v prostředí pocházejí zejména z vnitřních zdrojů, je situace odlišná. Pokud není identifikován významný aktivní zdroj polutantů, je situace způsobena nejčasněji nedostatečnou cirkulací vzduchu. S tím se setkáváme většinou u prostor, které nejsou upravovány centrální klimatizací (malé uzavřené depozitáře, vitríny, útěsněně uložné prostory, využití obalových materiálů, apod.) a zároveň prostředí není upravováno žádným filtračním mobiliářem zařízením nebo pasivním sorbentem.

Mezi efektivní a ekonomicky nenáročně ochranná opatření pak patří např. využívání vhodnějších druhů obalových materiálů. Využijte takové materiály, které jsou chemicky neutrální (neksydelu lepenky a papíry, nebarvenou bavlnu, polyethylenové sáčky a folie) nebo aktivně sorbující škodliviny (archivní papíry a lepenky s alkaličkou rezervou). Na trhu je dnes k dispozici řada výrobků, které tyto parametry splňují, například archivní papíry a lepenky SilverSafe™ a Microchamber™, Pacific Silver textile a Corrosion Intercept™ folie a sáčky pro ochranu korových předmětů. Je zde však potřeba zvýšená opatrnost v souvislosti s kontaktem předmětů s obalovým materiálem se specifickými vlastnostmi. Některé druhy chemických látek využívaných jako buffery nebo peří houževnatění jsou nebezpečně například pro fotografie nebo textile. Vhodným prostředkem, využívaným pro pasivní úpravu prostředí, je aktivní uhlí, které je velmi silným sorbentem polutantů a na trhu je k dispozici mnoho druhů výrobků včetně textilie z aktivního uhlí. Významným negativem těchto výrobků je, že nejsou známy sorpční kapacity materiálů a tudíž je značně omezeno jejich využití pro dlouhodobé uložení. Pro úpravy kvality vzduchu lze také využít malé přenosné filtrační jednotky, napájené bateriemi, kompaktní mobilní přenosné filtrační zařízení nebo i průmyslově vyráběné čističky vzduchu.
3. Literatura

C Problematika vybraných biologických škůdců v ochraně kulturního dědictví

Michal Mazík

Metodické centrum konzervace, Technické muzeum v Brně
mazik@technicalmuseum.cz

1. Úvod

V případě biologického napadení vyšších organismů, kromě vnitřních podmínek potřebných pro život, rozlišujeme zásadní kritérium, a to ročních období. Vyšší organismy mají komplikovanější strategii rozmnožování, spojenou do víceúrovního dospívání, které je často závislé na počasí a roční době. Je u nich možná příma migrace, taktéž často spojená s ročním obdobím a počasí. Častým problémem u vyšších vývojových druhů je, kdy například hlohadavci nebo ptáci jsou schopni obojí protiopatrné vlivem pastí, požerových nástrah nebo plásťeck. Problematika biologického napadení je široká, autor stručně jmenuje jen některé oblasti. Text by měl pomoci orientovat výbrané problematiky biologického napadení sbírek pro pracovníky v oblasti kulturního dědictví. Částečně se zaměřuje na výzkumnou činnost autora v oblasti sanace etylenoxidem a použití dýmovnic při sanaci muzejních depozitářů.

2. Vybrané biologické škůdci

Problematika řešení ochrany před biologickými možnostmi napadení je velmi široká. Pro možnosti preventivní i sanační ochrany předmětů kulturního pohybu je nutné zohledňovat řadu faktorů. Text nabízí metodický pohled pro základní uchopení vybrané problematiky. S důrazem pro praktické možnosti využití u identifikace a možnosti sanace jsou nejčastěji se vyskytujícím variantami biologického napadení houby a hmyz. K často napadaným materiálům patří také dřevo, a proto je text orientován právě na tuto specifickou oblast.
2.1. Problematika hub

Obecně by fungicid neměl obsahovat látky korozivní, ovlivňující pH, barevnost a vzhled ošetřovaného materiálu. Posouzení vhodnosti použitého prostředku s technologií a aplikačními možnostmi sanace je zápotřebí mezioborové spolupráce.

2.1.1 Identifikace a lokalizace napadení

2.1.2 Možnosti dezinfekce

Fungicidy fungují pouze na kontaktním principu, proto je důležité toto kritérium zohlednit. Z hlediska možností aplikace fungicidů, můžeme hovořit o fungicidech aplikovaných v roztoku a fungicidech plynných. U plynných fungicidů je často sanace spojená s použitím speciálního zařízení pro plynování. Nejčastěji je jedná o plynovací komory v knihovnách a archivech. Fungicidem zde bývá etylenoxid, nebo dříve používaný formaldehd. Plynování je možno provádět i plošně, prostřednictvím dýmovnic nebo jinak iniciovaných zdrojů plynu do izolovaných částí budov, místností nebo jednotlivých obalených předmětů. Při plošném užití nebezpečných fungicidních látek, často s velmi širokým spektem účinnosti, jako jsou kyanovodík (HCN) nebo fosfan (PH₃), je nutné zvážit pěkné zásady pro bezpečí práce a bezpečí předmětů.

V rámci dezinfekce etylenoxidem papírových nosičů černobílých fotografí a grafických tisků byla sledována hodnota pH papíru před a po procesu dezinfekce. Byla použita sterilizační jednotka SteriVac 5XL, objem komory 136 l, rozměry komory 380 x 430 x 830, náplně Steri-Gas 4-100, výrobce spol. 3 M New Ulm USA.

Sterilizovaný materiál je vystaven účinku plynného etylenoxidu za absolutního tlaku 60 kPa, při teplotě 37 °C, po dobu 3 hodin. Následuje odvětrávání vysterilizovaného materiálu po dobu 9 hod. přímo ve sterilizátoru za podtlaku 10 kPa (plynná sterilizační látky je vzduchem zředěna a následně spalována v abátoru typu M50).

Z měření pH lze usuzovat, že sanačním zásahem nedošlo ke snížení kyselosti papíru (naopak hodnoty pH jsou u všech měření vyšší pH 4,9–5,1). Vizuálním zhodnocením stavu dokumentů (zejména fotografii) po sanaci nebylo prokázáno žádné sekundární poškození.

Ukázka měření hodnot pH na dvou archiváliích a-b před a po ošetření

<table>
<thead>
<tr>
<th>místa měření</th>
<th>1a</th>
<th>2a</th>
<th>3a</th>
<th>4b</th>
<th>5b</th>
<th>6b</th>
</tr>
</thead>
<tbody>
<tr>
<td>hodnota pH před sanací</td>
<td>4,1</td>
<td>4,3</td>
<td>4,2</td>
<td>4,2</td>
<td>3,9</td>
<td>4,1</td>
</tr>
<tr>
<td>hodnota pH po sanací</td>
<td>4,9</td>
<td>5,0</td>
<td>5,1</td>
<td>5,1</td>
<td>4,8</td>
<td>4,9</td>
</tr>
</tbody>
</table>

2.2. Problematika napadení a vybrané druhy hmyzu

Hmyz (Insecta) je třídou členovec, jež je charakteristická šesti končetinami, schopností lebat a dělením těla na hlavu, hruď a zadeček. Článkovité tělo s exoskeletem, tvořeným chitinem a proteiny, má nervovou, oběhovou, trávicí, rozmnožovací a dýchací soustavu. Rozmnožuje se pohlavně, vývojově stupně jsou vajíčko, larva a dospělý jedinec. V ČR existuje přibližně 30 000 druhů hmyzu. V souvislosti s napadáním...

Vybraný přehled hmyzích škůdců a rizikový materiál, který je karakteristický pro jejich napadení

<table>
<thead>
<tr>
<th>Druh hmyzu</th>
<th>Druh napadaného materiálu</th>
</tr>
</thead>
<tbody>
<tr>
<td>červotoč umlčí a červotoč proužkový</td>
<td>dřevo, papír</td>
</tr>
<tr>
<td>tesařík krovový</td>
<td>dřevo</td>
</tr>
<tr>
<td>rušník muzejní</td>
<td>keratin, vlasy, kůže/useň, vlna, peří</td>
</tr>
<tr>
<td>mravenci</td>
<td>dřevo</td>
</tr>
<tr>
<td>švábi</td>
<td>papír, kůže/useň, vlna vlasy, želatinové materiály,</td>
</tr>
<tr>
<td>mol šatní</td>
<td>textil – zejména vlna, peří, kožešiny</td>
</tr>
<tr>
<td>rybenka domácí</td>
<td>papír</td>
</tr>
<tr>
<td>veš knižní</td>
<td>akvarely, želatiny, papír a kůže/useň</td>
</tr>
<tr>
<td>kožožob obecný</td>
<td>keratin, kůže/useň, pergamen, kožešiny</td>
</tr>
</tbody>
</table>

2.2.1 Identifikace a lokalizace napadení

2.2.2 Možnosti dezinfekce hmyzu

Podle fyziologického účinku na organismus sanovaného hmyzu rozdělujeme insekticidy na:

Podle způsobu průniku do organismu rozdělujeme:

- kontaktní.. průnik celým povrchem těla (plynování, postřik)
- požerkové.. průnik přes zaživací trakt (nástrahy, preventivní aplikace)
- dýchací.. průnik dýchacím ustrojím (plynování)

Podle způsobu průniku do organismu rozdělujeme:

- respirační.. blokují dýchací systém
- protoplasmové................................. způsobují rozpad živých buněk
- nervové.. blokují činnost centrální nervové soustavy
- hormonální.. ovlivňují vývoj, rozmnožování, růst a chování hmyzu.

Společnou nevýhodou fyzikálních metod sanace je potřeba preventivního ošetření ozařovacího materiálu. Aplikace je tedy nutné spojena s potřebou preventivní aplikace insekticidu. Chemické prostředky pro hubení hmyzu, insekticidy, můžeme dělit na základě několika faktorů, a to dle možnosti strategie průniku do organismu, fyziologického účinku, chemického působení a druhu insekticidu. Požadavky na preventivní aplikaci povinně musí splňovat chemické přípravky pro hubení hmyzu.

Pro ochranu dřeva se doporučují:
• permethrin................ hranice účinnosti 10 g/m³
• cypermetrin............... hranice účinnosti 0,2 g/m³
• deltametrin.............. hranice účinnosti 0,5 g/m³
• cyflutrin................ hranice účinnosti 0,5 g/m³

Předností pyretroidů je široké spektrum účinnosti proti hmyzu, malá toxicita pro teplomilné živočíchy a značná expoziční stabilita, která je však často omezena. Všeobecně platí, že se ochrana pyretroidy se pravidelně obnovuje v pětičlenných až desetičlenných cyklech. Hormonální insekticidy jsou látky, které cíleně narušují určité stadium vývoje hmyzu. Vývoj hmyzu je synchronizovaný hormony od vajíčka až po imago, přičemž růst a přeměna forem hmyzu kontrolují především dva typy specifických hormonů:

- „Svlékací hormon“ – kontroluje a umožňuje u larev v průběhu jejich růstu několikrát svléknutí staré (zchitinizované) kutikuly a nárůst vždy nové (a větší) – až po kuklu.
- „Juvenilní hormony“ – kontroluje a řídí lihnutí a přeměnu larv na kuklu a lihnutí hmyzu.

2.2.3 Studie – Vhodnost použití dýmovnic pro sanaci předmětů kulturního dědictví

ISE elektrody kalibrační křivkou. Taktéž byla otestována jednoduchá možnost testování vhodnosti dýmovnic na principu Oddyho testu na kuponech Fe, Al, Cu, Pb, Ag (Obr. č. 3), kde se zvýšená korozní zátěž projevila zejména u železa a mědi. Tato jednoduchá metodika by se dala využít jako orientační v každém muzeu.

Dýmovnice Ultimate
Vzorek spadu byl deponován v průběhu celého plynování a byl umístěn vodorovně s podlahou místnosti ve vzdálenosti několika metrů od zdroje spadu. Vzorek pochází z plynování depozitáře Krkonošského muzea ve Vrchlabí. Deponované sklíčko bylo analyzováno za pomoci SEM-EDS.

Obr. č. 2: Snímek částic deponovaného prachu na skleněné podložce z dýmovnice Ultimate.

Při zvětšení jsou viditelné dva druhy prachových částic, tmavé částice prachu jsou pravděpodobně běžně se vyskytující prach. Malé světlé částičky o přibližné velikosti 10 μm obsahují vysoký obsah chlóru. Jedná se o produkty hoření chlorečnanů z použité dýmovnice.

<table>
<thead>
<tr>
<th>Element</th>
<th>App Conc.</th>
<th>Intensity Corrn.</th>
<th>Weight%</th>
<th>Weight% Sigma</th>
<th>Atomic% Compd%</th>
<th>Formula</th>
<th>Number of ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>C K</td>
<td>33.38</td>
<td>0.4501</td>
<td>16.97</td>
<td>0.69</td>
<td>23.80</td>
<td>62.18</td>
<td>CO₂</td>
</tr>
<tr>
<td>Na K</td>
<td>43.94</td>
<td>1.0413</td>
<td>9.66</td>
<td>0.21</td>
<td>7.07</td>
<td>13.02</td>
<td>Na₂O</td>
</tr>
<tr>
<td>Mg K</td>
<td>2.21</td>
<td>0.8033</td>
<td>0.63</td>
<td>0.06</td>
<td>0.44</td>
<td>1.05</td>
<td>MgO</td>
</tr>
<tr>
<td>Si K</td>
<td>29.87</td>
<td>0.9380</td>
<td>7.29</td>
<td>0.16</td>
<td>4.37</td>
<td>15.59</td>
<td>SiO₂</td>
</tr>
<tr>
<td>Cl K</td>
<td>25.1</td>
<td>0.8093</td>
<td>7.10</td>
<td>0.17</td>
<td>3.37</td>
<td>0.00</td>
<td>0.42</td>
</tr>
<tr>
<td>Ca K</td>
<td>3.20</td>
<td>0.9587</td>
<td>0.76</td>
<td>0.06</td>
<td>0.32</td>
<td>1.07</td>
<td>CaO</td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td>57.59</td>
<td>0.73</td>
<td>60.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cation sum 4.50

Tabulka č. 1: Složení prachové částice deponované při plynování dýmovnic typu Ultimate, analýzou SEM-EDS.
Obr. č. 3: Sada kovových kuponů pro zhodnocení korozní agresivity dýmovnicového spadu v popředí. V pozadí sklo pro analýzu deponovaného spadu za pomocí SEM, foto Igor Fogaš.

Obr. č. 4: Ukázka iniciace dvou dýmovnic Miniax KS, foto Igor Fogaš.

Poděkování:
Tuto formou bych rád poděkoval za spolupráci při řešení problematiky dýmovnic Ak. mal. Igoru Fogašovi, pracovníkům Krkonošského muzea ve Vrchlabí, za konzultaci k termosanaci a problematice dřevokazného hmyzu Ing. Andree Nasswettrové a za praktickou výpomoc svým spoluautům a kolegům.
3. Literatura:

Kučerová, I. a kolektiv autorů: Koroze a degradace polymerních materiálů, Studijní materiály VŠCHT, část 3, s. 19–98.
A Mikroklimatische Parameter der Umgebung für die Aufbewahrung von Sammlungsgegenständen, Mess- und Regulierungsverfahren

Alena Selucká
Methodisches Zentrum für Konservierung, Technisches Museum in Brünn.
selucka@technicalmuseum.cz

1. Einleitung

2. Temperatur

1 Im Text wird weiter der Begriff „Sammlungsgegenstände“ verwendet.
2 Der Einfluss von Licht hat einen bedeutenden Einfluss insbesondere bei der Ausstellung der Gegenstände; bieferen Verwahrung in Museumsdepots kann dieser Risikofaktor zweckmäßig eliminiert werden, deshalb wird ihm in diesem Kapitel keine weitere Aufmerksamkeit gewidmet.
3 http://www.imagepermanenceinstitute.org/ shtml_sub/dl_prescalc.shtml

<table>
<thead>
<tr>
<th>Material</th>
<th>Temperatur-Längenausdehnungskoeffizient [ppm/°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weiße Eiche, Quercus alba, Querschnitt</td>
<td>0,3</td>
</tr>
<tr>
<td>Weiße Eiche, Quercus alba, Radialschnitt</td>
<td>32</td>
</tr>
<tr>
<td>Weiße Eiche, Quercus alba, tangential</td>
<td>40</td>
</tr>
<tr>
<td>Ölfarbe, white lead</td>
<td>44</td>
</tr>
<tr>
<td>Ölfarbe, yellow ochre</td>
<td>64</td>
</tr>
<tr>
<td>Ölfarbe, Naples yellow</td>
<td>52</td>
</tr>
<tr>
<td>Hasenleim</td>
<td>29</td>
</tr>
<tr>
<td>Kupfer</td>
<td>17</td>
</tr>
<tr>
<td>Aluminium T-2024</td>
<td>23</td>
</tr>
</tbody>
</table>

Tab.1: Temperatur-Längenausdehnungskoeffizient für verschiedene Malmaterialien, angepasst nach Mervin, 2007.

3. Relative Luftfeuchte

Die relative Luftfeuchte (RV) beeinflusst die Geschwindigkeit zahlreicher Zerfallsmechanismen. Für jedes Material existiert eine bestimmte Stufe der Luftfeuchtigkeit in der Umgebung, welche im Einklang mit dessen chemischen, biologischen und physikalischen Stabilität steht. Sofern die Umgebungsfteuchtigkeit unangemessen ist, d. h. zu hoch oder zu niedrig (oder es treten plötzliche Temperaturschwankungen ein), dann wird der entsprechende Wert der relativen Luftfeuchte zum Risikofaktor. Grundsätzlich gibt es keinen allgemeingültigen Wert der relativen Luftfeuchte oder einen Intervall deren Schwankungen, welche sicher für die Mehrzahl von Sammlungsgegenständen sein könnten.

Ein Beispiel hierfür sind organische Materialien, welche hygroskopisch sind, d. h. die Fähigkeit besitzen, Wasser aus der Umgebung aufzunehmen oder im Gegenteil, das Wasser an die Umgebung abzugeben. Dieser Austausch findet so lange statt, solange nicht ein Diffusionsgleichgewicht zwischen dem natürlichen Wasserinhalt des Materials mit der Umgebung erreicht wird (gleichgewichtige Feuchte). Sofern die Feuchtigkeit der Umgebung gleichmäßig und unverändert bleibt, dann erreicht das organische Material eine bestimmte Stufe des Gleichgewichts und es bleibt relativ stabil. Sofern die Feuchtigkeit der Umgebung zu hoch oder zu niedrig ist oder deren Schwankungen auftreten, dann reagiert das organische Material mit einer Veränderung der physikalischen Parameter bis hin zum Stadium von Beschädigungen (Deformierung, Risse, Wellen, Veränderung der mechanischen Eigenschaften o. Ä.).

Die volumenbezogene Feuchte im Material ist durch das Verhältnis der Masse des Wasservolumens zur gesamten Masse des feuchten Musters gegeben (ggf. der Masse der Trockensubstanz).

\[w = \frac{m_v}{m} \times 100 \ [\%] \]

Aus den angegebenen Sorptionsisothermen ist ersichtlich, dass das Feuchtegleichgewicht auch von der Umgebungstemperatur der feuchten Luft abhängig ist. Die Gestalt der Sorptionsisothermen deutet an, dass es zum höheren Anwachsen der gleichgewichtigen Feuchte von Holz bei einer relativen Luftfeuchtigkeit über 70% und beim Absinken der Temperatur kommt. Schwankungen der relativen Luftfeuchte im Intervall RV von 40-60 % gilt zumeist bei Holz als akzeptabel, sie dürfen jedoch nicht zu schnell und zu häufig verlaufen. Die Sorptionsisotherme verschiedener Materialien können sehr unterschiedlich sein, dennoch sind die Abschnitte im mittleren Bereich der dem Holz zugehörigen Kurven bei einer Temperatur um 20 °C auch für eine ganze Reihe anderer organischer Materialien wie Papier, Textilien o. Ä. ähnlich.

Andererseits ist es im Allgemeinen nicht notwendig, dass die Umgebungsluft für die Erhaltung einer bestimmten Feuchte des Materials eine stets gleichbleibende Temperatur und relative Luftfeuchtigkeit haben muss. Das Gleichgewicht der Feuchte wird auch bei unterschiedlichen Lufttemperaturen akzeptabel erreicht, sofern der Einfluss des Temperatur-Längenausdehnungskoeffizienten vernachlässigt werden kann und sofern die relative Luftfeuchte der gegebenen Temperatur angepasst wird. Deshalb gilt, dass bei niedrigerer Temperatur die relative Luftfeuchte niedriger sein muss und umgekehrt, bei höherer Temperatur muss die relative Luftfeuchte höher sein [Černý, 2011].

Ein neues Konzept für die Auswertung und Festlegung geeigneter Temperaturbedingungen und der relativen Luftfeuchte organischer hygroskopischer Materialien führt die neue EU-Norm, in der Tschechischen Republik herausgegeben unter ČSN EN 15757: „Erhaltung des kulturellen Erbes – Festlegungen für Tem-

Abb. 1: Sorptionsisotherme eines gewöhnlichen Waldholzes bei verschiedenen Temperaturen (w – volumen-abhängige Feuchte im Holz; φ (RV) – relative Luftfeuchte).
peratur und relative Luftfeuchte zur Begrenzung klimabedingter mechanischer Beschädigungen an organischen hygroskopischen Materialien“. Diese Norm definiert ein sog. „historisches Klima“, welches als „klimatische Umgebungsbedingungen, in dem diese Objekte des Kulturerbes stets gehalten oder in welchem sie für einen längeren Zeitraum (mindestens über den Zeitraum eines Jahres) aufbewahrt wurden und in der sie akklimatisiert sind“. Sofern nachgewiesen worden ist (aufgrund einer fachlichen Bewertung deren Zustandes durch ein Konservator-Restaurator und weitere Spezialisten), dass das historische Mikroklima für die gegebenen Materialien unschädlich ist, dann empfiehlt diese Norm, die Gegenstände in der gegebenen Umgebung, auf die sie sich über einen längeren Zeitraum akklimatisiert haben, zu belassen.

Bei der Festlegung geeigneter klimatischer Bedingungen wird in Anbetracht des Charakters und der Empfindlichkeit der aufbewahrten Sammlungsgegenstände empfohlen, folgende Werte einzustellen und nicht zu überschreiten:

- zulässiges Unter- und Oberlimit RV
- akzeptable Veränderungsgeschwindigkeit RV
- Umfang der Fluktuationen RV

Bei der Mehrzahl der Materialien treten Beschädigungen durch den Einfluss einer falschen relativen Luftfeuchte auf, sobald die relative Luftfeuchtigkeit höher als 70 % oder konstant niedriger als 30 % ist.

Ein Beispiel hierfür ist die bekannte Tatsache, das Pyrit (Eisen-II-Disulfid) bei Bedingungen einer relativen Luftfeuchte nahe 60 % oxidiert und zerfällt. Deswegen ist es für die Aufbewahrung von mineralogenen und paläontologischer Sammlungen, welche dieses Mineral enthalten erforderlich, die relative Luftfeuchte unter 60 % zu halten. Gleiches gilt für instabiles Glas (mittelalterliches Glas mit einem hohen Anteil alkalischer Anteile), das bei höherer Luftfeuchte für die Entstehung eines irisierenden Belages und Korrosionsprodukten stärker anfälliger ist. Ebenfalls wird bei höherer Luftfeuchte (über 65 %) die saure Hydrolyse des Papieres bedeutend beschleunigt, insbesondere bei stark säurehaltigem, minderwertigem Papier sowie bei Papieren, welche mit Tinten mit Eisengallustinen beschrieben sind.

Für die Mehrzahl anorganischer Materialien sind jedoch Bedingungen einer niedrigen relativen Luftfeuchte unter 30 % optimal. Beispiele hierfür sind Eisengegenstände, für die eine sehr trockene Umgebung mit einer relativen Luftfeuchte unter 18 % empfohlen wird (Stabilisierung der aktiven Chloridkorrosion) oder bei Gegenständen, bestehend aus Kupferlegierungen die von der Bronzekrankheit betroffen sind, gelten Bedingungen mit einer relativen Luftfeuchte von unter 50 %.

erfordern jedoch eine entsprechende Gebäudekonstruktion mit einer hochwertigen Isolierung und einem ge-
steuerten Innenklima. Energetisch ist die Gruppe A vorteilhafter, welche entweder kurzfristige Schwankungen
oder saisonbedingte Änderungen RV ± 10 % zulässt, jedoch nicht beides gleichzeitig. Die Mehrzahl historischer
Gebäude oder kleinere Museen fallen in die Gruppe B mit den angegebenen Gradienten der Temperatur und
Luftfeuchte. Die Festlegung der Klassifikation C entspricht der Prävention von Risiken, welche mit den Grenz-
v-werten RV und T zusammenhängen und die Gruppe D stellt nur den Schutz gegen hohe Luftfeuchte dar.

<table>
<thead>
<tr>
<th>T °C</th>
<th>RV %</th>
<th>Änderungen RV, T</th>
<th>Risiken /Vorteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahres-durchschnitt</td>
<td>Jahres- oder historischer Jahresdurchschnitt</td>
<td>Saisonale Festlegung</td>
<td>Kurzzeitige Fluktuation</td>
</tr>
<tr>
<td>± 5 °C</td>
<td>± 5 %; ±2 °C</td>
<td>AA – ohne Risiken mechanischer Beschädigungen der meisten hygroskopischen Materialien (Malereien o. Ä.) außer instabile Metalle und Mineralien.</td>
<td></td>
</tr>
<tr>
<td>± 10 °C</td>
<td>± 10 %; ±2 °C</td>
<td>A – geringe Risiken einer mechanischen Beschädigung für hochempfindliche Materialien, ohne Risiken für die meisten Materialien – Malereien, Bücher, Fotografien.</td>
<td></td>
</tr>
<tr>
<td>+10 % - 10 %</td>
<td>± 5 %; ±2 °C</td>
<td>B – mittlere Risiken einer mechanischen Beschädigung für hochempfindliche Materialien, geringe Risiken für die meisten Materialien – Malereien, Bücher, Fotografien.</td>
<td></td>
</tr>
<tr>
<td>15–20 °C</td>
<td>50 %</td>
<td>± 10 %; ± 5 °C</td>
<td>C – hohe Risiken einer mechanischen Beschädigung für hochempfindliche Materialien, mittlere Risiken für die meisten Materialien.</td>
</tr>
<tr>
<td>unter 75 %</td>
<td>Trockene Umgebung – spezifische Bedingungen für die Aufbewahrung von Metallen.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Messen und Regulieren der Temperatur und relativen Luftfeuchte

Eine weitere Möglichkeit die Luftfeuchte innerhalb von Gebäuden zu regulieren ist es, die Beheizung zu nutzen. Es handelt sich um ein einfaches Prinzip, welches auf der Abhängigkeit der relativen Luftfeuchte von Temperatur beruht (s.o.). Im Ausland wird eine Beheizungsmethode eingesetzt, die mittels eines Luftfeuchtereglers gesteuert wird, das sog. „conservation heating“. Dieses Verfahren beruht auf der Voraussetzung, dass für die Sicherstellung der Stabilität der meisten Materialien es wichtiger ist, die relative Luftfeuchte zu kontrollieren als die Temperatur. Die Heizung setzt ein, sobald die relative Luftfeuchte über den eingestellten Wert (z. B. 60 %) ansteigt und sie schaltet sich bei deren Absinken unter einen eingestellten Wert wieder ab. Gleichzeitig wird ein oberer Temperaturgrenzwert eingegeben, bei welchem sich die Heizung stets abschaltet, um ein Überheizen des Raumes zu verhindern (z. B. 25 °C). Im Gegenzug wird auch ein unterer Temperaturgrenzwert (5 °C) eingestellt, bei dem die Heizung einsetzt, damit das Gebäude nicht frostig abkühlt. Die Strategie der Kontrolle der relativen Luftfeuchte mithilfe der Heizung wurde erfolgreich in der Mehrzahl historischer Gebäude, die vom National Trust in Großbritannien verwaltet werden, eingeführt [Stanifoth, 2007; Bullock 2009]. Für große Gebäude, die mit Wärmepumpen ausgestattet sind, erweist sich die Beheizung mit Feuchtigkeitsmessern als das effektivste Verfahren, vorausgesetzt dass deren Wärmedämmung nicht allzu schlecht ist [Broström, 2011].

Ein anderes Konzept zur Regulierung der relativen Luftfeuchte berücksichtigt den Einfluss der Temperatur auf Sorptionsisotherme von hygroskopischen Materialien, der bei anderen Arten der Klimakontrolle oft vernachlässigt wird. Für diese Materialien gilt, dass deren Feuchtigkeitsvolumen bei einer Temperaturerhöhung in der Umgebung reduziert wird, selbst wenn die relative Luftfeuchte konstant bleibt (s. Abb. 2). Aus diesem Grund ist es angemessen, im Sommer eine höhere relative Luftfeuchte einzustellen als im Win-

5. Literatur

ČSN/ISO 11799: Informace a dokumenty. Požadavky na ukládání archivních a knihovních dokumentů.

ČSN EN 15757: Ochrana kulturního dědictví – Požadavky na teplotu a relativní vlhkost prostředí s cílem zamezit mechanickému poškozování organických hygroskopických materiálů, k němuž dochází v důsledku klimatu., Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2011.

Konzerování a restaurování kovů – Ochrana předmětů kulturního dědictví z kovů a jejich slitin, Technické muzeum v Brně, 2011, S. 303–304.

B Effektive Bewertung der Qualität der Innenumgebung in Museen und Galerien

Hana Grossmannová

Methodisches Zentrum für Konservierung, Technisches Museum in Brünn.
grossmannova@technicalmuseum.cz

1. Einleitung

2. Untersuchung, Monitoring, Evaluierung, Applikation

Was also alles erwartet uns, sofern wir mit dem Problem der Verschmutzung von Innenräumen in Institutionen fertig werden wollen und warum überhaupt mit dieser anspruchsvollen Arbeit beginnen? Grundlegende Motivationen für die Durchführung eines Projektes der Bewertung der Umweltqualität kann es im Allgemeinen mehrere geben. Die optimale Variante ist das Bemühen der fachlichen Mitarbeiter, einen effektiveren Schutz der Sammlungsgegenstände zu erreichen. Häufiger jedoch reagieren die Fachleute erst auf offensichtliche Anzeichen eines fortschreitenden Verfalls des Materials oder auf ein Anwachsen der Schadstoffe in den Objekten infolge der entstandenen Veränderungen. Unter diesem Aspekt muss gesagt werden, dass eine Analyse, ob nun das gegebene Material aufgrund des Einflusses von Schadstoffen oder in Folge un-

Auf welche Art und Weise und was kann also ausgewertet werden? Das gegebene Ziel erreichen wir auf Grundlache der Erfüllung der folgenden Aufgaben: Auswahl der Messstellen, Auswahl konkreter Schadstoffe, Auswahl der Analysemethoden, Auswertung und Anwendung der Ergebnisse. Das einigende Element, das wir bei jedem Schritt des Experiments zu berücksichtigen haben, sind die zeitlichen, fachlichen und vor allem die wirtschaftlichen Anforderungen an die Durchführung.

2.1. Auswahl der Messstellen – wo muss gemessen werden und was soll beobachtet werden

Die erste Frage, die sich der Fachmitarbeiter stellen sollte, welche Stellen und weshalb diese unter dem Aspekt der Verschmutzung durch chemische Stoffe überwacht werden sollen. Hier ist es angebracht zu berücksichtigen, dass die Grundlage einer jedweden Studie in diesem Bereich insbesondere die erstmalige Untersuchung von Lokalitäten und der mit ihnen zusammenhängende Auswertung möglicher Risiken ist. Wichtiger als detailliert und hoch kompliziert die vorhandenen Schadstoffe zu beschreiben und zu analysieren ist es nämlich, mittels einer grundlegenden Untersuchung abzuschätzen, wo potenzielle Schadstoffquellen vorhanden sind und zu lernen, diese auf eine geeignete Art und Weise zu eliminieren. Die Messserien sollten dann völlig eindeutig gleichzeitig an einigen konkret ausgewählten Lokalitäten durchgeführt werden. Eine der Messstellen sollte im Außenbereich stattfinden, was für die Gewinnung von Referenzwerten wichtig ist. Wie geht man nun bei der Auswahl der Messstellen für die Analyse vor? Es ist erforderlich, den Blick insbesondere auf Risikostellen zu richten, und zwar auf folgende Faktoren:

1) Zu erwartendes Vorhandensein von Schadstoffen

2) Spezifische Belastung der Umgebung

3) Anzeichen des beschleunigten Verfalls des aufbewahrten Materials

Mit einer detaillierten Untersuchung eines Museums oder einer Galerie können wir eine erhöhte Schadstoffkonzentration mithilfe einer indirekten Methode beurteilen, und zwar durch das Auffinden von Gegenständen mit beschleunigtem Verfall des Materials. Hier ist jedoch ganz klar eine Zusammenarbeit mit dem

4) Ungünstige klimatische Parameter

2.2. Auswahl konkreter Schadstoffe – was werden wir messen

2.3. Auswahl der analytischen Methoden-wie werden wir messen, Kriterien
Feststellung der Konzentration zahlreicher wichtiger Schadstoffe wäre es notwendig, langzeitig eine Reihe von Proben gleichzeitig, parallel aus allen Lokalitäten zu entnehmen.

Korrosions- oder anderer Dosimeter, bzw. der passiven Entnahmen anbetrifft, ist der Einsatz gleicher Typen parallel in allen untersuchten Lokalitäten. Wie die Erfahrung zeigt, unterscheiden sich die Ergebniswerte verschiedener Laboratorien deutlich und die Ergebnisse können eher für einen Vergleich der einzelnen Lokalitäten verwendet werden.

2.4. Auswertung – Applikation der Maßnahmen

3. Literatur

C Problematik ausgewählter biologischer Schädlinge beim Schutz des Kulturerbes

Michal Mazík

Methodisches Zentrum für Konservierung, Technisches Museum in Brünn.
mazik@technicalmuseum.cz

1. Einleitung

2. Ausgewählte biologische Schädlinge

2.1. Problematik von Pilzen

2.1.1 Identifizierung und Lokalisierung des Befalls

Pilze, die von einer ausreichenden Wasserzufuhr abhängig sind, können auf Kondensationsflächen, auf Flächen von Holzkonstruktionen erwartet werden, welche in Kontakt mit feuchtem Mauerwerk sind, an Orten mit geringer Luftzirkulation oder bei undichten Dächern, in welches Wasser eindringt. Häufig treten sie in engen Räumen auf, die ein Entstehen eines Mikroklimas ermöglichen, z. B. Fotografien in Glasrahmen oder auf einer Papierunterlage, Verpackungen, die keine Wasserdämpfe durchlassen, enge Ausstellungsvitrinen u. Ä. Wie bereits erwähnt, die Identifizierung ist schwierig und häufig mit der mechanischen Beschädigung des Gegenstandes, verursacht durch die Aktivitäten der Pilze, verbunden. Bei Schimmelarten besteht die Möglichkeit, zur Detektion ultraviolettes Licht für die Lumineszenz von Glykol und anderer Metaboliten in UV-Bereich einzusetzen (Abb. 1).

Abbildung 1: Kopfpolsterbezug, mit Schimmel befallen, unter UV-Licht, Foto Jana Fricová.

2.1.2 Möglichkeiten der Desinfektion

2.1.3 Studie – Einfluss der Desinfektion mit Ethylenoxid auf den pH-Wert.

Beispiel der pH-Messwerte auf zwei Archivalien a-b vor und nach der Behandlung

<table>
<thead>
<tr>
<th>Messstellen</th>
<th>1a</th>
<th>2a</th>
<th>3a</th>
<th>4b</th>
<th>5b</th>
<th>6b</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH-Wert vor der Behandlung</td>
<td>4,1</td>
<td>4,3</td>
<td>4,2</td>
<td>4,2</td>
<td>3,9</td>
<td>4,1</td>
</tr>
<tr>
<td>pH-Wert nach der Behandlung</td>
<td>4,9</td>
<td>5,0</td>
<td>5,1</td>
<td>5,1</td>
<td>4,8</td>
<td>4,9</td>
</tr>
</tbody>
</table>

2.2. Problematik des Befalls und ausgewählte Insektenarten

Ausgewählter Überblick von Insektenschädlings und des Risikomaterials, welches für deren Befall charakteristisch ist

<table>
<thead>
<tr>
<th>Insektenart</th>
<th>Art des befallenen Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trotzkopf und Gemeiner Nagekäfer</td>
<td>Holz, Papier</td>
</tr>
<tr>
<td>Hausbock</td>
<td>Holz</td>
</tr>
<tr>
<td>Kabinettkäfer</td>
<td>Keratin, Haare, Leder, Wolle, Federn</td>
</tr>
<tr>
<td>Ameisen</td>
<td>Holz</td>
</tr>
<tr>
<td>Schaben</td>
<td>Papier, Leder, Wolle, Haare, gelatinehaltige Materialien</td>
</tr>
<tr>
<td>Kleidermotten</td>
<td>Textilien – insbesondere Wolle, Federn, Pelze</td>
</tr>
<tr>
<td>Silberfischchen</td>
<td>Papier</td>
</tr>
<tr>
<td>Bücherlaus</td>
<td>Aquarelle, Gelatine, Papier und Leder</td>
</tr>
<tr>
<td>Gemeiner Speckkäfer</td>
<td>Keratin, Leder, Pergament, Pelze</td>
</tr>
</tbody>
</table>
2.2.1 Identifizierung und Lokalisierung des Befalls

2.2.2 Möglichkeiten der Desinfektion des Insektenbefalls

Gemäß der Anwendungsmethode kann es sich um eine präventive oder desinfektions-präventive Anwendung handeln.

Gemäß der Art des Eindringens in den Organismus unterscheiden wir:
• Kontakt................................ Eindringen über die gesamte Körperoberfläche (Begasung, Aufsprühen)
• Nahrung.................................. Eindringen über das Verdauungssystem (Fallen, präventiver Einsatz)
• Atmung................................. Eindringen durch das Atmungssystem (Begasung)
Gemäß der Art der physiologischen Wirkungsweise auf den Organismus der abzutötenden Insekten untergliedern wir Insektizide:

- respirative......................... blockieren das Atemsystem
- protoplasmatische............. bewirken den Zerfall lebender Zellen
- Nervengifte......................... blockieren das zentrale Nervensystem
- hormonelle......................... beeinflussen die Entwicklung, Fortpflanzung, Wachstum und Verhalten der Insekten.

Für den Holzschutz werden empfohlen:
- Permethrin................ Wirkungsgrenze 10 g/m³
- Cypermethrin............. Wirkungsgrenze 2 g/m³
- Deltamethrin............. Wirkungsgrenze 0,2 g/m³
- Cyfluthrin................. Wirkungsgrenze 0,5 g/m³

Der Vorzug der Pyrethroiden beruht auf deren breitem Wirkungsspektrum gegenüber Insekten, geringe Toxizität für Warmblüter und eine erhebliche Stabilität nach dem Aufbringen, die jedoch zeitlich begrenzt ist. Allgemein gilt, dass der Schutz mit Pyrethroiden regelmäßig in fünf- bis zehnjährigen Zyklen erneuert wird. Hormonelle Insektizide sind Stoffe, welche gezielt bestimmte Wachstumsstadien der Insekten stören. Die Entwicklung der Insekten wird mittels Hormonen vom Ei bis zum Imago synchronisiert, wobei das Wachstum und der Wechsel der Stadien der Insekten vor allem durch zwei Typen spezifischer Hormone kontrolliert wird:

a) „Häutungshormon“ – kontrolliert und ermöglicht bei Larven in der Wachstumsphase einen mehrfachen Wechsel der Cuticula (chitinisiert) und das Nachwachsen einer jeweils neuen – bis zur Puppe.

b) „Juvenilhormone“ – kontrollieren und steuern das Schlüpfen der Eier, die Umwandlung von der Larve zur Puppe und das Schlüpfen der Insekten.

2.2.3 Studie – Eignung des Einsatzes von Rauchkerzen zur Desinfizierung von Gegenständen des Kulturerbes

Rauchkerze „Ultimate“

Tabelle 1: Zusammensetzung des Staubteilchens bei der Begasung mit der Rauchkerze „Ultimate“.

<table>
<thead>
<tr>
<th>Element</th>
<th>App Conc.</th>
<th>Intensity</th>
<th>Weight%</th>
<th>Weight% Sigma</th>
<th>Atomic%</th>
<th>Compd%</th>
<th>Formula</th>
<th>Number of ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>C K</td>
<td>33.38</td>
<td>0.4501</td>
<td>16.97</td>
<td>0.69</td>
<td>23.80</td>
<td>62.18</td>
<td>CO₂</td>
<td>2.97</td>
</tr>
<tr>
<td>Na K</td>
<td>43.94</td>
<td>1.0413</td>
<td>9.66</td>
<td>0.21</td>
<td>7.07</td>
<td>13.02</td>
<td>Na₂O</td>
<td>0.88</td>
</tr>
<tr>
<td>Mg K</td>
<td>2.21</td>
<td>0.8033</td>
<td>0.63</td>
<td>0.06</td>
<td>0.44</td>
<td>1.05</td>
<td>MgO</td>
<td>0.05</td>
</tr>
<tr>
<td>Si K</td>
<td>29.87</td>
<td>0.9380</td>
<td>7.29</td>
<td>0.16</td>
<td>4.37</td>
<td>15.59</td>
<td>SiO₂</td>
<td>0.55</td>
</tr>
<tr>
<td>Cl K</td>
<td>25.1</td>
<td>0.8093</td>
<td>7.10</td>
<td>0.17</td>
<td>3.37</td>
<td>0.00</td>
<td></td>
<td>0.42</td>
</tr>
<tr>
<td>Ca K</td>
<td>3.20</td>
<td>0.9587</td>
<td>0.76</td>
<td>0.06</td>
<td>0.32</td>
<td>1.07</td>
<td>CaO</td>
<td>0.04</td>
</tr>
<tr>
<td>O</td>
<td>57.59</td>
<td>0.73</td>
<td>60.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cation sum 4.50

Abb. 3: Im Vordergrund: Coupons für die Bestimmung der Korrosionsaggressivität des Rauchkerzen-Niederschlags. Im Hintergrund: Glasplatte für die Analyse des aufliegenden Niederschlags mit Hilfe von SEM, Foto Igor Fogaš.

Danksagung:

3. Literatur:
Kučerová, I. a kolektiv autorů: Koroze a degradace polymerních materiálů, Studijní materiály VŠCHT, Teil 3, S. 19–98.
PREVENTIVNÍ KONZERVACE: MODERNÍ POSTUPY A TECHNOLOGIE
PRÄVENTIVE KONSERVIERUNG: MODERNE VERFAHREN UND TECHNOLOGIEN

Vydavatelé / Herausgeber:
Jihomoravský kraj / Kreis Südmähren
Technické muzeum v Brně / Technisches Museum in Brno
Text: Alena Selucká, Hana Grossmannová, Michal Mazík

Obrazové přílohy pocházejí z archivů autorů, pokud není uvedeno jinak.
Die Bildbeilagen stammen, fals nicht anders vermerkt, aus den Archiven der Autoren.

Sazba a tisk / Layout und Druck: GRAFEX-AGENCY s.r.o.

Brno 2014